Atom Modelleri

Atom Modelleri

ATOM MODELLERİ

Bugün bildiğimiz atom bilgisi, teorik ve deneysel konularda yıllardır sürekli yapılan çalışmaların bütünüdür. Çalışmalar sonucunda atomun varlıgıı kesin bilgi hâlini aldıktan sonra, onları daha yakından tanımak, özellikleri ile ilgili araştırma ve incelemeler yapmak için modeller tasarlanmaya başlanmıştır. Model, bir konu ya da olayın anlaşılmasını kolaylaştırmak amacıyla tasarlanır, ancak olayın gerçek niteliğini belirtmez.

Atom modelleri; ilim adamları tarafından hayal edilmiş tablolardan ibarettir. Bunlar atomu doğrudan doğruya gözlemleyerek yapılan taslaklar değildir. En sade atom modelinde atomlar, içi dolu esnek küre olarak kabull edilir. Şimdi atom modellerini inceleyelim.

1.DALTON ATOM MODELİ

Sabit oranlar kanunu ve katlı oranlar kanunu olarak gördüğümüz bileşiklerdeki kütlesel ilişkilere bakarak 1803 yılında John Dalton, maddelerin çok çok küçük yapı taşlarının topluluğu halinde bulunduğu, fikrini ileri sürdü.

Dalton atom teorisi olarak ortaya konulan temel özellikler şunlardır;

1. Maddelerin özelliklerini gösteren birim parçacıklar atomlar veya atom gruplarıdır.

2. Aynı cins elementlerin atomları birbirleriyle tamamen aynıdır.

3. Atomlar içi dolu kürelerdir.

4. Farklı cins atomlar farklı kütlelidir.

5. Maddenin en küçük yapıtaşı atomdur. Atomlar parçalanamaz.

6. Atomlar belli sayılarda birleşerek molekülleri oluştururlar.

Örneğin, 1 atom X ile l atom Y’den XY, l atom X ile 2 atom Y den XY2 bileşiği oluşur. Oluşan bileşikler ise standart özellikteki moleküller topluluğudur.

Atomla ilgili günümüzdeki bilgiler dikkate alındığında Dalton atom modelindeki eksikliklere ek olarak üç önemli yanlış hemen fark edilir.

1. Atomlar, içi dolu küreler değildir. Boşluklu yapıdadırlar.

2. Aynı cins elementlerin atomları tam olarak aynı değildir. Kütleleri farklı (İzotop) olanları vardır.

3. Maddelerin en küçük parçasının atom olduğu ve atomların parçalanamaz olduğu doğru değildir. Radyoaktif olaylarda atomlar parçalanarak daha farklı kimyasal özellikte başka atomlara ayrışabilir; proton, nötron, elektron gibi parçacıklar saçabilirler.

2. THOMSON ATOM MODELİ:Üzümlü Kek Modeli

Dalton atom modelinde (-) yüklü elektronlardan ve (+) yüklü protonlardan söz edilmemişti. Yapılan deneyler yardımıyla, katot ışınlarından elektronun, kanal ışınlarından protonun varlığı ortaya konulmuştu. Bu bilgiler ışığında Thomson’un atomla İlgili fikirlerini aşağıdaki şekilde özetleyebiliriz.

1. Protonlar ve nötronlar yüklü parçacıklardır. Bunlar yük bakımın*dan eşit, işaretçe zıttırlar. Proton + 1 birim yüke; elektron ise -1 birim yüke eşittir.

2. Nötr bir atomda proton sayısı elektron sayısına eşit olduğundan yük*ler toplamı sıfırdır.

3. Atom yarıçapı 10-8 cm olan bir küre şeklindedir. Söz konusu küre içerisinde proton ve elektronlar atomda rast gele yerlerde bulunurlar. Elektronun küre içindeki dağılımı üzümün kek içindeki dağılımına benzer.

4. Elektronların kütlesi ihmal edilebilecek kadar küçüktür. Bu nedenle atomun ağırlığını büyük ölçüde protonlar teşkil eder.

Nötron denilen parçacıklardan bahsedilmemesi Thomson Atom teorisinin eksiklerinden biridir. Proton ve elektronların atomda rastgele yerlere bulunduğu İddiası ise teorinin hatalı yönüdür.

3. RUTHERFORD ATOM:Çekirdekli Atom Modeli.

Atomun yapısının açıklanması hakkında,önemli katkıda bulunanlardan birisi de Ernest Rutherford (Örnıst Radırford) olarak bilinir. Rutherford’dan önce Thom*son atom modeli geçerliydi. Bu modele göre, atom küre şeklindedir. Ve küre içerisinde proton ve elektronlar bulunmaktadır.

Acaba bu proton ve elektronlar atom içerisinde belirli bir düzene mi, yoksa rastgele bir dağılım içerisinde mi bulunuyorlar? Bu sorunun cevabı daha bulunamamıştı. Rutherford bu sorunun cevabı ve Thomson atom modelinin doğruluk derecesini anlamak için yaptığı alfa (a) parçacıkları deneyi sonucunda bir model geliştirmiştir.

Polonyum ve radyum bir a-ışını kaynağıdır. Rutherford, bir radyoaktif kaynaktan çıkan a-taneciklerini bir demet hâlinde iğne ucu büyüklüğündeki yarıktan geçirdikten sonra, kalınlığı 10-4 cm kadar olan ve arkasında çinko sülfür (ZnS) sürülmüş bir ekran bulunan altın levha üzerine gönderdi.

Altın levhayı geçip ekran üzerine düşen a – parçacıkları ekrana sürülen ZnS üzerinde ışıldama yaparlar. Böylece metal levhayı geçen a – parçacıklarını sayma imkanı elde edilir.

Rutherford, yaptığı deneylerde metal levha üzerine gönderilen a- parçacıklarının % 99,99 kadarının ya hiç yollarında sapmadan ya da yollarından çok az saparak metal levhadan geçtiklerini, fakat çok az bir kısmının ise metale çarptıktan sonra büyük bîr açı yaparak geri döndüklerini gördü.

Rutherford daha sonra deneyi altın levha yerine, kurşun, bakır ve platin metallerle tekrarladığında aynı sonucu gördü. Kinetik enerjisi çok yüksek olan ve çok hızlı olarak bir kaynaktan çıkan a – parçacıklarının geriye dönmesi için;

1.Metal levhada pozitif kısmın olması,

2.Bu pozitif yüklü kısmın kütlesinin (daha doğrusu yoğun*luğunun) çok büyük olması gerekir.

Bu düşünceden hareketle Rutherford, yaptığı bu deneyden şu sonuçlan çıkardı.

Eğer, a tanecikleri atom içerisindeki bir elektrona çarpsaydı, kinetik enerjileri büyük olduğu için elektronu yerinden sö*kerek yoluna devam edebilirlerdi. Ayrıca, a – taneciği pozitif, elektron negatif olduğundan geriye dönüş söz konusu ol*maması gerekirdi.

Bu düşünceyle hareket eden Rutherford,metale çarparak geriye dönen alfa parçacıklarının sayısı metal levhadan geçenlere oranla çok küçük olduğundan; atom İçerisinde pozitif yüklü ve kütlesi büyük olan bu kısmın hacmi, toplam atom hacmine oranla çok çok küçük olması gerektiğini düşünerek, bu pozitif yüklü kısma çekirdek dedi.

Rutherford, atomun kütlesinin yaklaşık olarak çekirdeğin kütlesine eşit olduğunu ve elektronlarında çekirdek etrafındaki yörüngelerde döndüğü*nü ileri sürmüştür. Buna göre, Rutherford atomu güneş sistemine benzetmiş oluyordu. Rutherford atom modelini ortaya koyduğunda nötron*ların varlığı daha bilinmiyordu.

Günümüzde ise çekirdeğin proton ve nötronlar içerdiği ve bunların çekirdeğin kütlesini oluşturduklarına inanılmaktadır. Rutherford’un ortaya koyduğu atom modelinin boyutlarını da anlamak önemlidir. Bunu şu şekilde ifade edebiliriz. Eğer, bir atomun çekirdeği bir tenis topu büyüklüğünde olsaydı, bu atom büyük bir stadyum büyüklüğünde olurdu.

He atomu 2 proton, 2 nötron ve 2 elektron*dan oluşur.

Bir He atomunun 2 elektronu tamamen uzaklaştırılırsa geriye +2 yüklü helyum iyonu (He+2) kalır. Bu iyona alfa (a) parçacığı (alfa ışını) denir.

Bir atomu a – taneciği ile incelemek, bir şeftaliyi uzun bir iğne ile incelemeye benzer, iğnenin şeftalinin ortasında sert bir şeye çarptığını tespit ederek şeftali çekirdeğinin varlığını ve büyüklüğünü onu hiç görmeden anlamak mümkündür. Bu arada şeftali ile çekirdeğinin büyüklüğü ve atom ile çekirdeğinin büyüklüğünün aynı oranda olamayacağı unutulmamalıdır.

4. Bohr Atom Teorisi

Buraya kadar anlatılan atom modellerinde, atomun çekirdeğinde, (+) yüklü proton ve yüksüz nötronların bulunduğu, çekirdeğin etrafında dairesel yörüngelerde elektronların dolaştığı ifade edildi. Bu elektronların çekirdek etrafında nasıl bir yörüngede dolaştığı, hız ve momentumlarının ne olduğu ile ilgili bir netice ortaya konmadı. Bohr ise atom teorisinde elektronların hareketini bu noktadan inceledi.

1913 yılında Neils Bohr, hidrojen atomunun spektrum çizgilerini ve Planck’ın kuvantum kuramını kullanarak Bohr kuramını ileri sürdü. Bu bilgiler ışığında Bohr postulatları şöyle özetlenebilir.

1. Bir atomdaki elektronlar çekirdekten belli uzaklıkta ve kararlı hâllerde hareket ederler. Her kararlı hâlin sabit bir enerjisi vardır.

2. Her hangi bir kararlı enerji seviyesinde elektron dairesel bir yörünge*de (orbitalde) hareket eder. Bu yörüngelere enerji düzeyleri veya ka*bukları denir.

3. Elektron kararlı hâllerden birinde bulunurken atom ışık (radyasyon) yayınlamaz. Ancak, yüksek enerji düzeyinden daha düşük enerji düzeyine geçtiğinde, seviyeler arasındaki enerji farkına eşit bir ışık kuantı yayınlar. Burada E = h-i) bağıntısı geçerlidir.

4. Elektron hareketinin mümkün olduğu kararlı seviyeler, K, L, M, N, O gibi harflerle veya en düşük enerji düzeyi l olmak üzere, her enerji düzeyi pozitif bir tam sayı ile belirlenir ve genel olarak “n” İle gösterilir, (n: 1,2,3 …..¥)

Bugünkü bilgilerimize göre; Bohr kuramının, elektronların dairesel yörüngelerde hareket ettikleri, ifadesi yanlıştır.

Bohr atom modeli, hidrojen atomunun davranışını çok iyi açıkladığından ve basit olduğundan önce büyük ilgi gördü. Ancak, bu model çok elektronlu atomların davranışlarını (atomların spektrumlarını, atom çekirdeğinin bir elektronunu yakalayarak başka atom çekirdeğine dönüşünü) açıklayamadığından yaklaşık 12 yıl kadar geçerli kaldı. Daha sonra yerini modern atom teorisine bıraktı.

Bohr’a göre, elektronlar çekirdekten belirli uzaklıklarda dairesel yörüngeler izlerler. Çekirdeğe en yakın yörüngede bulunan (n = 1) K tabakası en düşük enerjilidir. Çekirdekten uzaklaştıkça tabakanın yarıçapı ve o kabukta bulunan elektronun enerjisi artar. Elektron çekirdekten sonsuz uzaklıkta iken (n @¥) elektronla çekirdek arasında, çekim kuvveti bulunmaz. Bu durumda elektronun potansiyel enerjisi sıfırdır. Elektron atomdan uzaklaşmış olur. Bu olaya iyonlaşma denir.

Elektron çekirdeğe yaklaştıkça çekme kuvveti oluşacağından, elektro*nun bir potansiyel enerjisi olur. Elektron çekirdeğe yaklaştıkça atom kararlı hâle doğru gelir, potansiyel enerjisi azalır. Buna göre, elektronun her enerji düzeyindeki potansiyel enerjisi sıfırdan küçük olur.

Yani negatif olur. Bohr hidrojen atomunda çekirdeğe en yakın enerji düzeyinde (K yörüngesi) bulunan elektronun enerjisini -313,6 kkaldir.

Modern Atom Kuramı: 1920-1930

Modern atom kuramı, tümüyle kuantum kuramı temeli üzerinde yükseliyor. Artık modellenemeyen bir “matematiksel” betimlemenin içinde düşünmemiz gerek. Bu kuram, öncelikle çekirdek çevresindeki elektron “davranışı”nı belirler.

Elektron, bulunduğu zaman tümüyle bir parçacık olarak kavranmıştı. Ama sonraları, onun aynı zamanda bir dalga özelliği taşıdığı anlaşıldı. Elektron nedir? Parçacık mı? Evet. Dalga mı? O da evet! Peki çekirdek çevresindeki elektronların bulunduğu uzay parçalarını biliyor muyuz? Evet. Onlara orbital diyoruz. Orbitaller s,p,d ve f harfleriyle simgeleniyor.Niels Bohr, elektronların her enerjiyi değil,belirli enerjileri alabildiğini benimseyerek yeni atom kuramını geliştirmişti. Bohr, çok elektronlu atomların karmaşık tayf çizgilerini ise açıklayamıyordu.

Bir elektrik alan, bir atomun tayf çizgilerini, değişik frekanslarda,birkaç çizgiye daha ayırır(Stark Olayı)Bu da Bohr kuramı için bir bilmeceydi.

Atomların ışıması bir manyetik alan içinde incelendiği zaman oluşan tayf çizgilerinin herbirinin bir kaç çizgiye ayrılması olayına “yarılma” denir. Çizgilerin ayrıklığı manyetik alanın şiddetine bağlıdır. Bir manyetik alanda tayf çigilerinin yarılması olayını 1896’da Hollandalı fizikçi Pieter Zeeman (1865-1943) keşfetti. Zeeman olayı, uzay kuantumlanmasının etkili bir kanıtıdır.

Modern Atom Kuramının temeli üç büyük adıma dayanır:

1.Parçacıkların dalga özelliği göstereceğinin kestirilmesi, Louis de Broglie,1924.Broglie, o zamana dek birbirinden ayrıymış gibi duran iki eşitliği Planck eşitliği(E=hf) ile Einstein eşitliğini (E=mc2) birleştirdi,her parçacığın bir dalga özelliği taşıması gerektiğini açıkladı.

2. Dalga mekaniğinin yani Schrödinger dalga denklemi denen denklemin keşfi. Erwin Schrödinger ,1926.

Schrödinger 1926 yaz aylarında dalga denklemi türetti. Dalga denklemine göre,örneğin, hidrojen atomunda elektronun konumu kuantize değildir, bu bakımdan,elektronun çekirdek civarında,birim hacim başına belli bir bulunma olasılığını düşünmemiz gerekir. Fakat öngörülebilen hiçbir konum, hatta klasik anlamda yörünge söz konusu değildir. Bu olasılıkçı söylem, hidrojen atomu üzerinde yapılan deneylerin, atomun bir bütün elektron (belirli bir bölgede bir elekronun yüzde 27’sini başka bölgelerde yüzde 73’ünü değil) içermekte olduğunu göstermesi gerçeği ile çelişmez; olasılık, elektronun bulunması ile ilgilidir ve her ne kadar bu olasılık uzayda dağılmış ise de elektronun kendisi dağılmış demek değildir.Madde dalgalarının gerçek dalgalar değil,dalga genliğinin karesiyle belirlenen olasılıkçı yorumunu Max Born yapmıştır. Ancak Schrödinger ve Einstein bu yoruma katılmamıştır.Ançak geçen zaman Born’u haklı çıkarmıştır.

3.Belirsizlik ilkesinin keşfi. Heisenberg,1927.

Elektronun yerini ve hızını aynı anda belirlemede sorun var mı? Var. Elektronun yerini belirleme konusunda yüzdeler veriyoruz. Elektron yüzde 90 olasılıkla şu atomik uzayda bulunabilir diye hesaplarımızın sonucunu veriyoruz. Bu olasılık, her ne kadar uzaya dağılmış ise de elektronun kendisi dağılmış demek değildir.

Elektronun atom içindeki yerini ışık kullanarak belirleyebiliriz. Belli dalga boyu olan bir ışıkla aydınlattığımız zaman,o dalga boyundan daha küçük ayrıntıları seçemeyiz. Bu iyi bilinen bir olgudur. Gerçekten badana fırçası ile bir İran minyatürü yapılamaz!

Elektronun yerini “görmek” istediğimizde “gördüğümüz yer” ,onun gerçek yeri değil de “fotonla itildiği yer” olacaktır. Burada kullanılan ışığın dalga boyu düzeyinde bir belirsizlik vardır. Bu belirsizlik, hiçbir zaman sıfıra indirilemeyecektir.

Benzer sorun elektronun hızını ve ona bağlı olan momentumunu belirlemede de karşımıza çıkıyor.

Uzatmayayım. Elektronun yerini ve momentumunu asla tam bir kesinlikle belirleyemeyiz. Bu konuda olasılıklar düzeyinde konuşabiliriz. Evet,elektronun çekirdek çevresinde bulunabileceği olası bölgeleri bilebiliyoruz. Elektronun olası ve ortalama hızını ve dolaysıyla momentumunu bilebiliyoruz.belirsizlik ilkesi ama bunları tam bir kesinlikle bilemiyoruz. Tam bir kesinlikle bilemediğimiz çok şey var. Bunları sorun etmeyin. Çünkü en yetkin bilim adamları bile bunları kesinlikle bilmiyor! Bu da belki daha alçakgönüllü olmamız için gerekli bilgiler.

Orbital, matematiksel bir fonksiyon olmakla birlikte, ona fiziksel anlam vermeyi deneyebiliriz: Eleketronu tanecik olarak düşünürsek orbital, atom içerisinde elektronun bulunma olasılığı yüksek bir bölgeyi simgeler. Elektronu bir maddesel dalga olarak düşünürsek orbital elektron yük yoğunluğu yüksek olan bölgeyi gösterir. Elektron “tanecik” olarak kabul edildiğinde,elektronun belirli noktalarda bulunma olasılığından ;elektron “dalga” olarak kabul edildiğinde ise, elektron yük yoğunluğundan söz ederiz.

Yani elektronun konumu kuantize değildir,bu bakımdan,elektronun çekirdek çevresinde,birim hacimdeki bulunma olasılığını(dalga genliğinin karesine,yani dalga şiddetini) düşünmemiz gerekiyor. Dalganın şiddeti (genliğin karesi) bir bölgedeki foton sayısına,yani foton yoğunluğuna bağlıdır.

Periyodik cetvelin tarihçesi

Elementlerin fiziksel ve kimyasal özelliklerindeki benzerliklerin araştırılması fizik ve kimyacıları ilgilendirmiştir. Gerçi benzer özelliklerdeki elementlerin sıralanabilmesi için bilinen elementlerin özelliklerinin öncelikle ortaya konulması gerekir. Altın, gümüş, kalay, bakır, kurşun ve cıva gibi elementler eski çağlardan beri biliniyordu. Bir elementin ilk bilimsel olarak bulunması 1649 yılında Henning Brand’ın fosforu bulmasıyla başlar. Bundan sonraki 200 yıl boyunca elementler ve onları bileşikleri hakkında kimyacılar tarafından pekçok bilgi elde edildi. Bununla beraber 1869 yılına kadar toplam 63 element bulunabilmişti. Bilinen elementlerin sayısı arttıkça, bilim adamları elementlerin özelliklerinin belli kalıplara oturduğunu anlamaya başladılar.

1817 yılında Johann Dobereiner benzer kimyasal özellikler sahip olan stronsiyum, kalsiyum ve baryuma bakarak, stronsiyumun atom ağırlığının kalsiyum ve baryum atom ağırlıklarının ortasında olduğuna dikkat çekti. 1829 yılında klor, brom ve iyot üçlüsünün de benzer özellikler gösterdiği bulundu. Yine benzer davranış lityum, sodyum ve potasyum için de gözleniyordu. 1829 ve 1858 yılları arasında bu konuda pek çok araştırma yapıldı. Bu sırada halojenler grubuna katıldı. Oksijen, kükürt, selenyum ve tellür bir grubun üyesi olarak düşünülürken azot, fosfor, arsenik, antimon ve bizmut başka bir grup içine yerleştirildiler.

İlk periyodik tabloyu oluşturma şerefi Fransız bilim adamı A. E. Beguyer de Chancourtois’e düştü. De Chancourtois, silindirin çevresine 16 kütle birimleri yerleştirerek elementleri buraya oturttu. Benzer özelliklerdeki elementler bu silindir üzerinde düşey satırlarda yer alıyordu. De Chancourtois, “Elementlerin özellikleri sayıların özellikler ile ilişkilidir” dedi ve her yedi elementte bir özelliklerin tekrarlandığının farkına vardı. Bu tablo kullanılarak birkaç metal oksidin stokiyometrisi önceden tanımlanabildi. Ne yazık ki bu cetvel üzerinde elementlerden başka bazı iyonlar ve elementlerde yer alıyordu.

İngiliz kimyacı John Newlands 1863 yazdığı bir yazıda benzer fiziksel özelliklere göre elementleri 11 gruba ayırmıştı. Atom ağırlıkları sekizin katı kadar olan elementlerin özellikleri benzerdi. 1864 yılında yazılan bir yazıda Newlands bunu Oktav kanunu (Law of Octaves) olarak tanımladı. Bu kanuna göre herhangi bir element tablodaki sekizinci elementle benzerlikler gösteriyordu.

 

Dmitri İvanoviç Mendeleev

Genelde periyodik tablonun babası olarak Alman bilim adamı Lother Meyer ve Rus bilim adamı Dmitri Mendeleev kabul edilir. Her ikisi de birbirinden habersiz olarak dikkate değer benzer sonuçlar ürettiler. Mendeleev atomların artan atom ağırlıklarına göre sıralandıklarında belli özelliklerin tekrarlandığını görmüştür. Daha sonra elementleri tekrarlanan özelliklerine göre alt alta sıralayarak ilk iki periyodu yedişer, sonraki üç periyodu ise onyedişer element içeren bir periyodik sistem hazırlamıştır. Mendeleev’in hazırladığı periyodik sistemde bazı yerleri henüz keşfedilmemiş elementlerin olduğunu düşünerek boş bırakmıştır. Daha sonra bulunan skandiyum, galyum, germanyum elementleri tablodaki boşluklara yerleşmişlerdir.

1895 yılında Lord Rayleigh, kimyasal olarak inert yeni bir gazı (argon) keşfettiğini bildirdi. Bu element periyodik tabloda bilinen hiçbir yere oturtulamadı. 1898 yılında William Ramsey bu elementin klor ile potasyum arasında bir yere konulabileceğini önerdi. Helyumda aynı grubun bir üyesi olarak düşünüldü. Bu grup elementlerinin değerliklerinin sıfır olması nedeniyle sıfır grubu olarak adlandırıldı.

Mendeleev’in periyodik tablosu her ne kadar elementlerin periyodik özelliklerini gösterse de neden özelliklerin tekrarlandığı konusunda herhangi bir bilgi vermemektedir.

1911 de Ernest Rutherford atom çekirdekleri alfa parçacıklarının saçılması deneyiyle çekirdek yükünün belirlenebileceğini gösterdi. Rutherford’un gösterdiği diğer bir şey bir çekirdeğin yükünün atom ağırlığı ile orantılı olduğuydu. Yine 1911 de A. Van den Broek bir seri çalışmasıyla elementlerin atom ağırlıklarının atom üzerindeki yüke yaklaşık eşit olduğunu gösterdi. Bu yük daha sonra atom numarası olarak tanımlandı ve periyodik tablodaki elementleri yerleştirmede kullanıldı. 1913 de Henry Moseley bir grup elementin X-ışınlar spektrum çizgilerin dalga boylarını ölçerek, atom numarası ile elementlerin X-ışınları dalga boylarının ilişkili olduğunu gösterdi. Bu çalışma Mendeleev, Mayer ve diğerlerinin yaptığı gibi atom ağırlıklarını temel seçmedeki yanlışlığı gösteriyordu.

Fakat neden periyodik özellikler gözleniyor sorusunun yanıtı ise Niels Bohr un elementlerdeki elektronik yapıyı incelemesiyle başlar diyebilir.

Periyodik tablodaki en son büyük değişiklik, 20. yüzyılın ortalarında Glenn Seaborg’un çalışmasıyla ortaya çıktı. 1940 da plutonyumu bulmasıyla başlayan araştırması, 94 den 102 ye kadar olan tüm uranyum ötesi elementlerin bulmasıyla sürdü. Periyodik tablodaki lantanit serisinin altına aktinitler serisini yerleştirdi. 1951 de Seaborg bu çalışmaları ile kimyada Nobel ödülünü kazandı. 106 nolu element seaborgiyum (Sg) olarak adlandırıldı.

Periyodik özellikler

Bir periyotta soldan sağa doğru gidildikçe,

Proton,nötron sayıları ve kütle numarası artar.

Atom numarası artar.

Değerlik elektron sayısı artar.

Elektron alma isteği (ametalik karakter) artar.

Yörünge sayısı değişmez.

Atom hacmi ve çapı azalır.

Bir grupta yukarıdan aşağıya inildikçe,

Proton,nötron sayıları ve kütle numarası artar.

Atom numarası artar.

Değerlik elektron sayısı değişmez(Bu nedenle aynı gruptaki elementlerin kimyasal özellikleri benzerdir).

Elektron verme isteği(metalik karakter)artar.

Yörünge sayısı artar.

Atom hacmi ve çapı artar.


tag Atom Modelleri Periyodik Cetvelin Tarihçesi DALTON ATOM MODELİ THOMSON ATOM MODELİ Üzümlü Kek Modeli RUTHERFORD ATOM Çekirdekli Atom Modeli Bohr Atom Teorisi Periyodik cetvel ders notları konu özetleri

2012-02-12 tarihinde ÖmerCan tarafından Araştırmalar DersNotları FenveTeknoloji Kimya kategorisine eklenen bu içerik toplam 7568 kez ve en son 2016-12-04 17:45:29 tarihinde görüntülenmiş.